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The effect of particle size, shape, distribution
and their evolution on the constitutive response
of nonlinearly viscous composites. II. Examples
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2Department of Applied Mathematics and Theoretical Physics,
University of Cambridge, Cambridge CB3 9EW, UK

Part I of this work was concerned with the development of constitutive models for
nonlinearly viscous and perfectly plastic composites, which are capable of accounting
for the evolution of microstructure when the composites are subjected to finite defor-
mation. This involved the derivation of instantaneous constitutive relations for the
composites depending on appropriate microstructural variables, as well as of evolu-
tion equations for these variables. As an application of the general theory, in this part
of the work, use is made of the models to analyse the response of porous materials
and of two-phase composites with perfectly plastic phases under axisymmetric load-
ing conditions (with fixed axes). Attention is focused on the effect of the evolution of
the distribution of the inclusions (or voids) on the overall response of the composites.
It is found that for porous materials, or for more general classes of composites where
the inclusions are softer than the matrix, the effect of changes in the distribution of
the inclusions is not very significant relative to the effect of changes in the size and
shape of the inclusions. On the other hand, for composites with inclusions that are
sufficiently harder than the matrix, the deformation is concentrated in the matrix,
and the effect of changes in the distribution function of the inclusions can become
quite significant.

1. Introduction

Part I of this work (Kailasam et al. 1997) was concerned with the development of con-
stitutive models for two-phase nonlinearly viscous and perfectly plastic composites
with evolving microstructures. This involved generalizing the earlier models of Ponte
Castañeda & Zaidman (1994) (see also Zaidman & Ponte Castañeda 1996)—which
included the effects of the evolution of the shape and size of the voids (inclusions) on
the overall response of the composites—to incorporate the ability to account for the
effect of the evolution of the spatial distribution of voids (inclusions) on the overall re-
sponse of the composites, when they are subjected to finite deformation. Henceforth,
the above two papers will be referred to as PCZ and ZPC, respectively, for conve-
nience. The constitutive models are formulated in terms of instantaneous effective
potentials and yield functions for nonlinearly viscous and perfectly plastic compos-
ites, respectively, which depend on appropriate microstructural variables, along with
the evolution equations for these variables. The potentials and yield functions were
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obtained in part I from the recent Hashin–Shtrikman estimates of Ponte Castañeda
& Willis (1995) for linear composites with ellipsoidal particulate microstructures
via the variational procedure of Ponte Castañeda (1991). For triaxial loading con-
ditions (with fixed loading axes), the following internal variables were selected to
characterize the state of the microstructure: the volume fraction and aspect ratios
of the inclusions, as well as the aspect ratios of the distribution function of the in-
clusion centres. Evolution equations for these variables were then developed, which
when solved in combination with the instantaneous constitutive equations provide
the complete constitutive description of the composite.

In this paper, we shall apply the model developed in part I to porous composites
with a perfectly plastic matrix and to two-phase incompressible composites with per-
fectly plastic phases. It is emphasized that the model can be used for composites with
more general nonlinear phases and that perfectly plastic phases have been chosen for
the sake of simplicity. We shall consider composites whose microstructure initially
consists of an isotropic distribution of spherical inclusions (voids) and are subjected
to axisymmetric loadings. We note that the model, in its present form, can be used
for composites subjected to general triaxial loading conditions and that axisymmet-
ric loads have been considered only for illustrative purposes. The outline of the paper
is as follows. First, in §2, the case of porous materials is considered and then, in §3,
two-phase composites are studied. Finally, in §4, some concluding remarks are of-
fered. In each case, yield surfaces for the composites are computed and the influence
of the relevant microstructural variables on the yield surfaces is considered. Then,
the instantaneous constitutive equations for the composites, which are obtained from
the yield functions, are solved in combination with the evolution equations for the
appropriate microstructural variables in order to obtain the effective response of the
composite when it is subjected to axisymmetric loading. In particular, we focus our
attention on the effect of the evolution of the distribution of the inclusions (voids)
on the overall response of the composite.

2. Application to porous composites with a perfectly plastic matrix

(a ) Effective yield surfaces
In this section, we obtain estimates for the effective yield surfaces of porous materi-

als. We will consider materials with microstructures that initially consist of isotropic
distributions of spherical voids. When such composites are subjected to axisymmet-
ric loads, where the only non-zero components of the stress are σ̄11 = σ̄22 and σ̄33,
the microstructure evolves so that the composites exhibit transverse isotropy. The
relevant microstructural variables are then the porosity (f), the aspect ratio of the
voids (wi) and the aspect ratio of the distribution (wd). It is noted that the effective
yield surfaces can be characterized in terms of the non-zero transversely isotropic
invariants of the stress, σ̄p = 1

2(σ̄11 + σ̄22) and σ̄n = σ̄33. In this case, the effective
yield functions are given by expressions of the type (see part I)

Φ̃(σ̄) =
σ̄ · (m̃σ̄)

1− f − (σ(1)
y )2, (2.1)

where σ̄ · (m̃σ̄) is given by expression (5.6) of part I, with m̃ being a function of the
microstructural variables, i.e. m̃ = m̃(f, wi, wd), and where (σ(1)

y ) denotes the yield
stress of the matrix phase. In this section, we study the effect of the aspect ratios of
the voids and of their distribution on the effective yield surfaces.
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Figure 1. Yield surfaces for porous materials: (a) the aspect ratio wd of the distribution is
fixed, while the aspect ratio of the inclusions wi is changed; (b) wd is varied while wi is fixed.

Detailed results have already been given by PCZ for the case where the aspect
ratios of the distribution and the voids are the same (wi = wd). As already men-
tioned, the new feature of the present work is the ability to model composites with
microstructures where these two aspect ratios may be different (wi 6= wd). For exam-
ple, we may consider microstructures with a fixed aspect ratio for the distribution,
but with varying aspect ratios for the voids, or vice versa. The σ̄p− σ̄n cross-sections
of the yield surface Φ̃(σ̄) = 0 (for porosity f = 25%) are shown in figure 1 to demon-
strate the effect of allowing the aspect ratio of the distribution of the voids to be
different from those of the voids themselves. In figure 1a, we consider the yield sur-
faces of composites whose microstructure consists of an isotropic distribution of voids
(wd = 1) and study the effect of void shape on the yield surface. It is seen that as the
voids are made more oblate (wi = 0.5), the normal tensile yield strength σ̄n tends to
decrease while the transverse yield strength σ̄p tends to increase. This can be under-
stood in terms of the fact that as the voids become more oblate, the proportion of
the matrix material in any transverse cross-section decreases (in an average sense),
which results in a lower load-carrying capacity for normal tensile loading. The in-
crease in σ̄p can be explained in a similar way. It is also observed that making the
voids prolate (wi = 2) has the opposite effect, although the effect is less marked. In
figure 1b, the voids have a fixed shape (wi = 1) while the shape of the distribution
is varied. It is observed that as the distribution becomes more oblate (wd = 0.5), σ̄n
increases while σ̄p decreases. Again, this can be explained by the observation that a
more oblate distribution results in more of the matrix material being present in any
transverse cross-section. In this case also, it is noted that making the distribution
prolate (wd = 2, 4) has the opposite effect (σ̄n decreases and σ̄p increases).

We observe that the effect of the shape of the distribution is, in general, the oppo-
site of that of the shape of the voids. Thus, decreasing values of wi tend to ‘rotate’
the yield surfaces toward the σ̄p axis, whereas decreasing values of wd tend to have
the opposite effect, although the effect is much less marked in the second case. These
observations are consistent with the findings of Ponte Castañeda & Willis (1995) for
linear elastic systems. We recall that although the two aspect ratios can be allowed
to be different from each other, there are some limitations on the range of values
that one aspect ratio can take for a fixed value of the other aspect ratio. This arises
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from the impenetrability restrictions on the ‘security regions’ of the voids (see Ponte
Castañeda & Willis 1995). Finally, it should also be mentioned that the effect of the
distribution is smaller than that of the shape of the voids. (A similar conclusion has
been reached by Koplik & Needleman (1988) in the context of numerical simulations
for periodic porous media.) This is to be expected since the effect of the distribution
is of second order in the porosity, while shape effects are of first order. More detailed
studies of the effect of the distribution on the yield strength of composites have been
performed, but they will not be shown here for brevity.

(b ) Evolution of the microstructure
We consider a porous material that is initially made up of an isotropic distribution

of spherical voids in a perfectly plastic matrix with a porosity of 15% and which is
subjected to axisymmetric strain-controlled loading of the type

σ̄11 = σ̄22 = βσ̄33, σ̄ij = 0 if i 6= j, D̄33 = ξ, (2.2)

where β and ξ are prescribed constants. The instantaneous constitutive equations
for the composite are then given by the following expression (see part I for details):

D̄ij =
1
H

∂Φ̃
∂σ̄ij

∂Φ̃
∂σ̄kl

˙̄σkl, (2.3)

where the hardening rate H is obtained from the expression

H = −
[
(1− f)

∂Φ̃
∂f

∂Φ̃
∂σ̄kk

+ wi ∂Φ̃
∂wi

{
(2a5 − a1)

∂Φ̃
∂σ̄11

+ (a2 − a6)
∂Φ̃
∂σ̄33

}
+ · · ·

+wd ∂Φ̃
∂wd

(
∂Φ̃
∂σ̄33

− ∂Φ̃
∂σ̄11

)]
, (2.4)

while the yield function Φ̃ is given by (2.1).
As mentioned earlier, when such a composite is subjected to axisymmetric loads of

the type (2.2), the relevant microstructural variables are the porosity (f), the aspect
ratio of the voids (wi) and the aspect ratio of the distribution of the voids (wd). The
evolution equations for these variables may be written as

ḟ = (1− f)D̄kk, (2.5)

ẇi = wi[(2a5 − a1)D̄11 + (a2 − a6)D̄33], (2.6)
and

ẇd = wd[D̄33 − D̄11], (2.7)
where the ai are the components of the strain-rate concentration tensor A(2), given
in the Appendix of part I. It is recalled that A(2), in this case, depends on all
the relevant microstructural variables (A(2) = A(2)(f, wi, wd)), but not on the ma-
terial properties. To obtain the effective response of the composite, the evolution
equations (2.5), (2.6) and (2.7) are solved in conjunction with the instantaneous
constitutive equation (2.3), along with expression (2.4) for the hardening rate.

The effect of the evolution of the pore shape on the effective response of porous
materials has already been discussed by PCZ. The reader is referred to that reference
for more details and, in particular, for a detailed study of the effect of triaxiality.
Here, we recall that the effect of changes in the shape of the voids can be of the same
order as that of the changes in porosity, at least for low values of the triaxiality.
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Figure 2. Effect of initial porosity on the evolution of the microstructure and on the effective
response of the porous material under uniaxial tension and compression: (a) the evolution of the
aspect ratios wi (continuous lines) and wd (short-dash lines) for different initial porosities; (b)
the evolution of the porosity f ; (c) the evolution of the effective hardening rate H for uniaxial
tension; (d) the evolution of the effective hardening rate H for uniaxial compression (long dash
lines correspond to simplified theory of PCZ).

In addition, it was observed in PCZ that changes in the shape of the voids can
significantly affect the evolution of the porosity and that the overall response of the
composite can become significantly anisotropic during a finite deformation process. In
this work, we concentrate on the effect of the evolution of the distribution of the voids
on the effective response of the composite, as it is subjected to finite deformations.
In particular, in this section, we study the cases where the composites are subjected
to uniaxial tension and compression (β = 0 in (2.2)).

In figure 2, plots are shown for the evolution of the aspect ratios of the voids (wi)
and their distribution (wd), as well as for the porosity (f) and effective hardening rate
(H), as functions of the logarithmic strain in the axial direction (ε̄33 =

∫ t
0 D̄33 dt = ξt)

for porous materials with an initially isotropic distribution of spherical pores, at
various values of the initial porosity f0. It is seen, from figure 2a, that wi (shown as
continuous lines) changes at a faster rate than wd (shown as short-dash lines), for
both uniaxial tension and compression. This may be attributed to the fact that the
deformation in this case is concentrated in the (softer) voids. For both tension and
compression, we note that wd evolves in essentially the same way for different initial
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porosities. This results from the fact that the evolution of wd is controlled by the
average rate of deformation in the composite whose components are not significantly
affected by the value of f0 (recall that D̄33 is a prescribed constant). On the other
hand, it is observed that the evolution of wi depends considerably on the initial
porosity. This can be understood in terms of the fact that the evolution of wi is
controlled by the average rate of deformation in the voids and this is a function of
the porosity. Also plotted, for comparison, are the evolution curves (shown as long-
dash lines) for the aspect ratio of the voids obtained by PCZ for f0 = 0.15, assuming
that the aspect ratio of the distribution evolves in precisely the same fashion as the
aspect ratio of the voids (wd = wi). It is observed that the evolution of wi predicted
in the two cases are almost identical, even at this relatively large value of f0.

In figure 2b, plots are shown for the evolution of the porosity, f , normalized by the
initial porosity, f0, under uniaxial tension and compression for different initial values
of f0. For tension, it is seen that the porosity in each case increases and reaches a final
value which depends on the initial porosity, with increasing f0 leading to smaller final
values of f/f0. On the other hand, for compression, it is observed that the strain
at which the porosity becomes zero is also a function of the initial porosity, with
increasing f0 resulting in an increase in the strain at which the porosity approaches
zero. In particular, for f0 = 0.15, the porosity approaches a finite value (f → 0.179)
for tensile loading, while it approaches zero at ε̄33 = 0.758 for compressive loading.
By comparing these predictions for f0 = 0.15 with the corresponding predictions
of PCZ (shown as long-dash lines) for tensile loading, it is seen that allowing the
distribution of the voids to evolve independently of the shape of the voids makes the
porosity evolve at a slower rate and also the final value of the porosity is slightly less
than that predicted by PCZ (f → 0.181). On the other hand, for compression, the
new results show that the porosity decreases at a faster rate and approaches zero for
an axial strain that is less by about 4% than that predicted by PCZ.

In figures 2c, d, plots of the effective hardening rateH as a function of ε̄33 are shown
for different initial porosities, for uniaxial tension and compression, respectively. It
is observed that for f0 = 0.01, H is close to zero (for both tension and compres-
sion) corresponding to the limiting case of a homogeneous perfectly plastic material,
while for larger porosities the behaviour is significantly different from that of a per-
fectly plastic material. Thus, for larger values of f0, it is observed that, for tensile
loading, H initially increases and then decreases, but remains positive throughout
the deformation process, whereas, for compression, H is initially negative and then
increases monotonously with increasing deformation to become positive. It is also
observed that the amount of deformation required for the hardening rate to become
positive, for compressive loading, increases slightly for larger values of f0. Finally, it
is seen that the response of the composite predicted by PCZ (shown in dash lines),
for f0 = 0.15, is qualitatively similar, although quantitatively different from that of
the present model. In particular, for compression, allowing the aspect ratios of the
distribution to evolve independently of the shape of the voids results in the harden-
ing rate being negative for a larger amount of deformation. However, it should be
emphasized that the effect of the distribution on the effective hardening rate is not
as significant as that of the shape of the voids or of the porosity.

(c ) Discussion and comparisons with other works
The purpose of this section is to compare the present model with other models

and numerical simulations for porous ductile solids that have been presented in the
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literature over the past 20 years. One of the first models for porous ductile (perfectly
plastic) solids is due to Gurson (1977), who made use of the earlier analyses by
McClintock (1968) and Rice & Tracey (1969) to account for the effect of porosity
and its evolution on the constitutive response of porous ductile materials subjected
to nearly hydrostatic loading conditions. The motivation for Gurson’s work, as well as
for its extensive applications in the literature, derives from its potential implications
for ductile fracture. Among several works to investigate the evolution of void shape
and size in porous power-law viscous solids, we may cite the articles of Budiansky
et al. (1982) and Banks-Sills & Budiansky (1982), as well as the more recent works
of Lee & Mear (1994) and Needleman et al. (1995). However, these works focused
on the details of the evolution of a single void in an infinite matrix or a finite cell,
but did not consider the implications of the evolution of the microstructure on the
effective constitutive response of the porous solids.

As far as full constitutive models—incorporating the effects of void size, shape and
their evolution on the effective response of porous materials—are concerned, there
are basically two types currently available. The first type, due to Gologanu et al.
(1993, 1994a), following the work of Lee & Mear (1992), constitutes an extension
of the Gurson model for perfectly plastic porous solids, subjected to axisymmetric
loading conditions. The second is the more general model of Ponte Castañeda &
Zaidman (1994), which applies for general nonlinearly viscous porous solids, as well as
general triaxial loading conditions, including axisymmetric and plane strain loading.
Of course, the present work constitutes an extension of this second class of models to
incorporate additionally the effect of the distribution of the voids and its evolution.

In an attempt to provide numerical corroboration for the predictions of our model,
figures 3 and 4 provide plots of the evolution of the aspect ratio of the voids (wi),
porosity (f) and equivalent average stress (σ̄e = (1 − β)σ̄33) in a porous perfectly
plastic material with an initially isotropic distribution of spherical voids, as functions
of the equivalent strain, (ε̄e), for three different triaxiality levels resulting in prolate
(X = 1

3 , 2
3 , 1, where X = (1 + 2β)/(3(1 − β))) and oblate (X = −1

3 , −2
3 , −1)

pore shapes, respectively. The idea is to be able to compare these results with the
FEM unit-cell computations of Gologanu et al. (1993, 1994a, b) (see also Koplik &
Needleman (1988) for X = 1, 2 and 3). The results of Gologanu et al. (1994b) (which
were scanned from their figures 2–7) are included in our figures 3 and 4. From these
comparisons, the following conclusions may be drawn.

First, our results given in figures 3a–c (shown as continuous lines) for the evolution
of the aspect ratio, porosity and stress, respectively, are in good qualitative agreement
with the numerical results of Gologanu et al. (shown in figures 3d–f as long-dashed
lines) for axisymmetric loading conditions resulting in prolate void shapes. However,
significant quantitative differences may arise for sufficiently large strains, especially
for the largest triaxiality value (X = 1). Consistent with the results of Gologanu et
al. (see figure 3f), it can be seen from figure 3c that σ̄e increases for X = 1

3 , whereas
it decreases for X = 2

3 and 1. As pointed out by PCZ, this can be understood in
terms of the fact that the porosity increases (see figure 3b), for X = 2

3 and 1, thus
providing a strong softening mechanism, whereas f levels off for X = 1

3 , resulting in
slight overall hardening, as a consequence of the change in shape of the voids (see
figure 3a).

Second, it is remarked that the numerical simulations predict a large drop in the
stress, for X = 1, at a strain of about 40%, as a consequence of the fact that the
strain localizes in the ligament between the voids, resulting in void coalescence (note
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Figure 3. Comparison of the model predictions for the evolution of the microstructure and for the
effective response of the porous materials with the unit-cell numerical results of Gologanu et al.
(1994b). The initial value of the porosity is 1.04% and the material is subjected to axisymmetric
loading conditions with three triaxiality levels leading to prolate void shapes. (a) and (d) give the
evolution of the aspect ratio of the voids for the model and numerical predictions, respectively.
(b) and (e) give the corresponding model and numerical predictions for the evolution of the
porosity. (c) and (f) give the corresponding model and numerical predictions for the effective
stress–strain relations. (Results are also shown in parts (a), (b) and (c) for the model assuming
that the shape of the voids and their distribution remains fixed.)
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Figure 4. Same as in figure 3, but for triaxiality levels leading to oblate void shapes.

that the porosity undergoes a sharp increase at this point). Our model is not able to
capture the details of these strongly nonlinear void-interaction effects, but it is able
to provide some information as to the possible developments of such instabilities, in
the following sense. The model predicts that the overall hardening rate (essentially,
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the slope of the stress curve) for the porous composite is positive for X = 1
3 , but

negative for X = 2
3 and 1. As mentioned in PCZ, this suggests that the deformation

for the first case will be stable, whereas that for the second case may be unstable.
Thus, while the homogenized model is unable to capture the details of the instability
development, it has the capability of predicting whether such instabilities may occur.
Evidently, they seem to occur if the effective hardening rate is negative, but they are
excluded if H is positive.

Third, in figures 3a–c, a comparison is also given between the predictions of the
model with evolution of the porosity and the aspect ratios of the voids and distribu-
tion taken into account (continuous lines) and the corresponding predictions of the
model with evolving porosity, but with fixed aspect ratios, wi = wd = 1 (dot-dashed
lines). In part, the motivation for this comparison is that it has already been estab-
lished (see PCZ) that the model with fixed wi = wd = 1 leads to predictions that are
very similar to those of the Gurson model, at least for low-triaxiality levels. Thus,
this type of comparison gives an idea of the types of errors that are introduced by
any model, including the Gurson model, which neglects the change in shape of the
voids (and distribution, to a lesser extent). For the specific types of loading depicted
in figure 3, it appears that neglecting the changes in shape of the voids (and distribu-
tion) tends to overestimate the predicted increase in the porosity and, therefore, the
drop in the load-carrying capacity of the porous solid. This is specially the case for
X = 1

3 , where accounting for changes in the shape of the voids results in increasing
stress, versus the opposite prediction when shape changes are neglected.

Similarly, for cases where the voids are subjected to axisymmetric loading resulting
in oblate shapes (X = −1

3 , − 2
3 and −1), the following observations may be made

by comparing the predictions of our model (figures 4a–c) with the corresponding
predictions of the numerical simulations of Gologanu et al. (figures 4d–f). First, the
predictions of our model are in fairly good qualitative agreement with the numerical
predictions, although quantitative differences arise for sufficiently large strains. Once
again, the differences are significant for the larger triaxiality values (X = −2

3 and
−1) and can be attributed to the void coalescence phenomenon in the numerical
simulations, resulting in sharper changes in the porosity and overall stress. On the
other hand, for the low-triaxiality value (X = −1

3), the predictions of our model
and of the numerical simulation are in excellent agreement, with the porosity first
increasing and then decreasing, leading to the opposite behaviour for the overall
stress.

Second, although initially negative (only slightly so), the effective hardening rate
of the porous material for X = − 1

3 turns around and becomes positive. This predic-
tion from our model suggests that for this level of triaxiality the overall deformation
should be stable, which is what is observed in the numerical simulations. On the
other hand, for the higher values of the triaxiality, the model predicts negative over-
all hardening rates, suggesting the possible development of instabilities, which, as
already mentioned, are observed in the numerical simulations at sufficiently high
strains. Thus, it is found that the model provides correct qualitative predictions,
including an indication of whether the development of shear instabilities (associated
with void coalescence) is possible.

Third, in figures 4a–c, comparisons are also given between the predictions of the
model (continuous lines) and the corresponding predictions with evolving porosity,
but with fixed aspect ratios, wi = wd = 1 (dot-dashed lines). For the specific types
of loading depicted in figure 4, it appears that neglecting the changes in shape of the
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voids (and distribution) tends to overestimate the increase in porosity, as well as the
drop in the load-carrying capacity for the porous solid, especially for X = −1

3 .
Comparisons for the evolution of the microstructural variables have also been

carried out with the dilute results of Lee & Mear (1994) (see also Budiansky et al.
1982). While the results of Lee & Mear, for power-law viscous porous materials,
show an increasingly strong dependence on the nonlinearity for increasing values of
the triaxiality, the predictions of the model for the evolution of the microstructural
variables are rather insensitive to the nonlinearity (see Kailasam & Ponte Castañeda
1995), and hence not appropriate for large triaxialities, as already mentioned in PCZ.
(Note that void shape change effects are relatively unimportant for sufficiently large
triaxialities.) However, the model is found to be in good qualitative agreement with
the numerical predictions of Lee & Mear (1994), for small to moderate triaxiality
(|X| 6 4

3). In particular, the model captures the saturation of porosity for uniaxial
tensile loading (see also Needleman et al. 1995) and the much faster collapse of
the voids for uniaxial compressive loading. Thus, the model predicts complete void
collapse, for dilute porosity levels, at an overall strain of about 60% (it increases with
initial porosity; see figure 2b) whereas the simulations of Lee & Mear (1994) (see also
Banks-Sills & Budiansky 1982) lead to a corresponding value between 50 and 65%
depending on the specific nonlinearity. As noted by PCZ and also by Lee & Mear
(1994), this level is significantly more realistic than the corresponding prediction of
the Gurson model with spherical inclusions (over 200%), and thus in closer agreement
with experiment (see, for example, daSilva & Ramesh 1991; Wang & Richmond 1992).

We conclude this section with two comments. First, we note that the limitations
of the model in terms of underestimating the dependence of the evolution of the
microstructural variables on the nonlinearity, in particular for large triaxialities, ap-
pears to be associated with the intrinsic limitations of the nonlinear homogenization
procedure, rather than with errors associated with the modelling of the evolution
phenomenon itself. Therefore, it is probable that improvements in the nonlinear ho-
mogenization procedure may alleviate these current limitations of the model. Second,
it was made clear in the previous section that the effect of changes in the distribution
of the voids are fairly small for porous materials, and therefore it is unlikely that
such effects would be detectable by numerical simulation or experiment. However,
as we will see in the next section, these effects can become relatively important for
particle-reinforced composites when the particles are sufficiently strong.

3. Application to two-phase composites with perfectly plastic phases

(a ) Effective yield functions
In this section, we obtain estimates for the effective yield functions of two-phase

composites where both phases—the inclusions and the matrix—are perfectly plas-
tic. For such a composite, the effective yield surface is given by expression (6.8) of
part I. Here, we consider composites with microstructures that initially consist of
isotropic distributions of spherical inclusions; they are subjected to axisymmetric
loads where the only non-zero transversely isotropic incompressible invariant of the
stress is τ̄d = (σ̄n − σ̄p)/√3. It is noted that, in this case, because of incompressibil-
ity, the hydrostatic stress is indeterminate and the volume fractions of the phases
remain fixed. Therefore, the relevant microstructural variables are the aspect ratio
of the inclusions wi and the aspect ratio of the distribution wd. The effective yield
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Figure 5. The effect of the aspect ratios of the distribution and the inclusions on the single-mode
yield strength τ̃d of two-phase composites with perfectly plastic phases, with an inclusion volume
fraction c(2) = 30%: (a) the matrix is the harder phase; (b) the inclusions are the harder phase.

function of the composite is then given by the expression

Φ̃(σ̄) = (τ̄d/τ̃d)2 − 1 = 0, (3.1)

where the single-mode axisymmetric yield stress τ̃d is in turn given by the expression(
τ̃d

τ
(1)
y

)2

= min
y>0

[(
1

m1(y)

)(
c(1) + c(2) z

2

y

)]
, (3.2)

where τ (1)
y = σ

(1)
y /
√

3 is the yield strength in shear of the matrix; c(1) and c(2) are
the volume fractions of the matrix and the inclusions, respectively; z = σ

(2)
y /σ

(1)
y is

the ratio of the yield strengths of the inclusions and the matrix; and the expression
for m1, as a function of wi, wd and y, is given in the Appendix of part I.

Here, we study the effect of the aspect ratio of the inclusions (wi) and their distri-
bution (wd) on the axisymmetric-mode yield strength τ̃d of the composite. Results
for the case where the aspect ratios of the inclusions and the distributions are the
same (wi = wd) have already been given by Ponte Castañeda & Zaidman (1996).
Here, we shall concentrate on composites with microstructures where the two aspect
ratios are allowed to be different (wi 6= wd). For illustrative purposes, we choose
the composite to be such that the two phases have yield strengths in the ratio four,
with inclusion volume fraction c(2) = 0.3. In one case, we choose the inclusions to be
harder so that σ(2)

y /σ
(1)
y = 4 and in the other case the matrix to be harder so that

σ
(1)
y /σ

(2)
y = 4.

In figures 5a, b, corresponding to harder matrix and inclusion phases, respectively,
plots of the yield strength τ̃d are shown for three cases. In the first case, wi is fixed
and wd is allowed to vary; in the second, wd is fixed and wi is allowed to vary; and
in the third, wi = wd is allowed to vary. It is observed that the effects of the aspect
ratios on the yield strength of the composite are similar, both when the inclusions
are softer and when the matrix is softer. However, it is noted that these effects
are more pronounced when the inclusions are harder. Irrespective of whether the
inclusions are softer or harder than the matrix, when wi = 1 and wd is varied, it is
observed that τ̃d reaches a maximum for values of wd slightly less than one. On the
other hand when wd is fixed, we note that τ̃d achieves a minimum for values of wi

slightly less than one. When wd = wi, the predictions of the yield strength τ̃d are in
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between those of the two earlier cases. This can be explained by noting that, as for
the porous composites, here also the effect of particle-distribution shape is roughly
the opposite of that of the particle shape, but less significant in relative terms. This
causes the yield stress when wd = wi to lie in between the two other curves, but
closer to the fixed wd curves than to the fixed wi curves. It is emphasized that the
effect of the distribution on the yield strength is, as expected, smaller than that of
the aspect ratio of the inclusions. This is due to the fact that distribution effects are
of second order in the volume fraction of the inclusions while the effect of shape of
the inclusions is of first order.

Finally, it is recalled that the hypothesis of ‘impenetrability’ of the inclusions (see
Ponte Castañeda & Willis 1995) imposes certain restrictions on the values that wi

(wd) can take for a fixed value of wd (wi). The results shown in figure 5 are thus
rigorously valid only in this range, the limits of which are demarcated by open circles
on the curves. It is also noted that numerical results for particle-reinforced composites
with periodic microstructures have been given by Bao et al. (1991), making use
of finite element computations on cylindrical unit cells. These results are roughly
consistent with our findings, except that the numerical predictions are more sharply
dependent on the volume fraction and aspect ratios of the inclusions and distribution.
This is presumably due to the periodicity assumption in the numerical results, which
leads to stronger interactions than that for the Hashin–Shtrikman microstructures
assumed in this work.

(b ) Evolution of the microstructure
In this section, we consider the application of the model to analyse the evolution

of the microstructure and its effect on the overall response of two-phase incompress-
ible composites with perfectly plastic phases as they are subjected to axisymmetric
loading. Due to incompressibility, the volume fractions of inclusions (c(2)) and the
matrix (c(1)) remain fixed throughout the deformation process. In addition, it suffices
to specify the (constant) axial strain rate D̄33 = ξ, so that D̄11 = D̄22 = − 1

2D̄33.
Recalling that the stress components σ̄33 and σ̄11 = σ̄22 are indeterminate to within
a hydrostatic pressure, we choose, for convenience σ̄11 = σ̄22 = 0. Here, we will
consider composites that are initially made up of an isotropic distribution (wd = 1)
of spherical inclusions (wi = 1) with inclusion volume fraction c(2) = 0.3. Then,
for the loading conditions considered (prescribed D̄33), the relevant microstructural
variables are wi and wd. The evolution equations for these variables can be written
as (using D̄11 = D̄22 = −1

2D̄33)

ẇi = wi[ 1
2a1 + a2 − 2a5]D̄33, (3.3)

and
ẇd = 3

2w
dD̄33, (3.4)

where the ai are the components of the strain-rate concentration tensor A(2) and are
given in the Appendix of part I. It is emphasized that in these expressions for the ai,
the optimized value of y, obtained from the optimization in (3.2), must be used (recall
that A(2) = A(2) (wi, wd; ŷ), where ŷ is the optimal value of y). The instantaneous
constitutive equation for the incompressible composite is given by (2.3) where the
expression for the hardening rate H can be written in the form

H = −
[
wi ∂Φ̃
∂wi (a1 + 2a2 − 4a5) + 3wd ∂Φ̃

∂wd

]
1
σ̄33

, (3.5)
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Figure 6. Evolution curves for two-phase composites with an initially isotropic distribution of
spherical perfectly plastic inclusions (with volume fraction c(2) = 30%) in a perfectly plastic
matrix when subjected to uniaxial tension (D̄33 > 0) for different values of the yield strength
ratio z: (a) evolution of the aspect ratio wi (and wd); (b) evolution of the hardening rate H.
Corresponding results of ZPC (wi = wd) are shown for comparison.

and the yield function Φ̃ is given by (3.1). It is also observed that when we choose
σ̄11 = σ̄22 = 0, the yield condition (3.1) specializes to

σ̄33 =
√

3τ̃d. (3.6)

The effects of changes in the shape of the inclusions on overall response for this
class of composites have been considered in some detail by ZPC. In the present work,
we shall therefore emphasize the corresponding effect of the distribution and its
evolution. In particular, we will consider the case of rigid inclusions, where the shape
of the inclusions remains fixed, in order to isolate the effects of the distribution on the
effective response of composites. When D̄33 is prescribed, the evolution equation (3.4)
for wd is easily solved, but since the ai in equation (3.3) need to be evaluated at the
optimal ŷ, the evolution equation (3.3) for wi requires the solution of (3.2) for ŷ.
Having found the history of wd and wi, as well as ŷ as a function of these variables,
the history of σ̄33 follows from (3.6) with (3.2).

Next, we consider the application of the model to uniaxial tensile (D̄33 > 0) and
compressive (D̄33 < 0) loading. In figure 6a plots are given for the evolution of wi

and wd as functions of ε̄33 = ξt for uniaxial tensile loading and for different values
of the yield strength ratio z. The aspect ratio of the distribution evolves along the
curve z = 1, which corresponds to identical materials for both phases, for all values
of z. This is as expected, since the evolution of wd is controlled by the average rate of
deformation in the composite which is a constant in this case; in fact, wd = exp(3

2 ε̄33).
It is seen that for z < 1 (inclusions are softer than the matrix) wi changes faster
than wd, corresponding to the deformation being concentrated in the inclusions. On
the other hand, for z > 1 (harder inclusions) wi changes at a slower rate than wd

(z = 1.5, 1.75). For sufficiently large z (e.g. z = 2) the inclusions initially begin to
change shape, but after a certain amount of deformation, they ‘lock up’ and behave
like rigid particles while the distribution continues to evolve (along the curve z = 1)
as a consequence of the deformation being concentrated in the softer matrix phase.

For purposes of comparison, we also show in figure 6a the results of ZPC for
the evolution of wi, assuming that the aspect ratio of the distribution evolves just
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like the aspect ratio of the inclusions. It is noticed that the evolution curves for wi

predicted in the two cases are almost identical for z < 1. This is because, for softer
inclusions, the deformation is localized in the inclusions and the change in shape of
the inclusions is then known to be dominant. Therefore, the change in the distribution
does not affect the evolution of the shape of the inclusions significantly. When the
inclusions are harder than the matrix (z > 1), greater differences are observed in
the two predictions for the evolution of wi. This is because the deformation is now
concentrated in the matrix, so that the inclusions change shape at a slower rate, which
makes the effect of the distribution more significant in relative terms. In particular,
for z = 2, the two predictions for the evolution of wi are very different. As mentioned
earlier, when the distribution effects, which are now dominant, are taken into account,
the inclusions lock up after a certain amount of deformation, while the corresponding
results of ZPC do not exhibit lock up of the inclusions. It is noted that for values
of z > 2, when distribution effects are taken into account, the inclusions effectively
behave like rigid particles, while the aspect ratio of the distribution continues to
evolve along the curve z = 1. At this point, it is appropriate to recall that the
hypothesis of impenetrability of the inclusions places some restrictions on the values
that the aspect ratios may take and that these results are rigorously valid only
while the hypothesis is satisfied. The aspect ratios beyond which the results are not
rigorously valid are identified by open circles on the evolution curves.

In figure 6b plots are shown for the evolution of the effective hardening rate H
as a function of the tensile axial strain ε̄33. For the case where the inclusions are
softer than the matrix (e.g. z = 0.25), it is seen that H is always positive. This is
because the yield strength τ̃d, and hence the axial stress, (σ̄33 =

√
3τ̃d), increases as

wi increases from its initial value of one (see figure 5a). It is also seen from figure 5a
that an increase in the aspect ratio of the distribution causes τ̃d to decrease, but
as mentioned earlier, the shape effects are dominant, when the inclusions are softer
than the matrix. As a consequence, the axial stress σ̄33 increases, and hence the
hardening rate is positive. The hardening-rate curves for values of z up to 1.75 can
also be explained in a similar manner because the shape effects continue to dominate
over the distribution effects. However, for even larger values of z (e.g. z = 2) the
distribution effects become dominant and the hardening becomes negative. (Note
that the sudden change in the hardening curve at ε̄33 = 0.27 is a consequence of the
‘locking up’ of the inclusions.) For the limiting case of rigid inclusions (z = ∞), as
noted earlier, wd continues to increase, although wi does not undergo any change.
This increase in wd causes the axial stress to decrease which results in the hardening
rate being negative throughout the deformation process. (Note that the curves for
z = 2 and ∞ are almost identical, after lock up of the inclusions in the first case.)

Also shown in figure 6b, for the sake of comparison, are the results of ZPC (shown
in dash lines), where the constraint wi = wd was implicitly enforced throughout
the deformation process. As expected, for small values of z, the differences between
the improved model accounting for independent changes in the distribution of the
particles and the earlier model with wi = wd are relatively small. However, for suf-
ficiently large values of z qualitatively different predictions are obtained for the two
models. Thus, for z = 2, when wi = wd increases, it is seen from figure 5b that the
axial stress increases, which causes the hardening rate to be positive throughout the
deformation process, which is in contrast with the predictions of the model incorpo-
rating distribution effects. Similarly, for the case where the inclusions are rigid, the
model of ZPC predicts that the microstructure does not evolve with deformation, as
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Figure 7. Evolution curves for two-phase composites with an initially isotropic distribution of
spherical perfectly plastic inclusions (with volume fraction c(2) = 30%) in a perfectly plastic
matrix when subjected to uniaxial compression (D̄33 < 0) for different values of the yield
strength ratio z: (a) evolution of the aspect ratio wi (and wd); (b) evolution of the hardening
rate H. Corresponding results of ZPC (wi = wd) are shown for comparison.

a result of which the axial stress remains constant (corresponding to zero hardening
rate). On the other hand, more realistically, the improved model takes into account
the changes in the distribution of the particles, and predicts that the axial stress
decreases with increasing deformation (corresponding to H being negative). These
contrasting predictions provide a dramatic example of the fact that, for sufficiently
hard inclusions, the effect of allowing the aspect ratio of the distribution to evolve
as an independent variable on the overall response of the composite can be very
important.

Next, we consider the evolution of the microstructure as the composite is subjected
to uniaxial compressive loading such that D̄33 < 0. As before, incompressibility
results in D̄11 = D̄22 = − 1

2D̄33 and we choose σ̄11 = σ̄22 = 0. Shown in figure 7a
are the evolution curves for the aspect ratios wi and wd for different values of z.
We note that, as before, wd evolves along the curve z = 1 for all values of z. Also,
similar to the results for the case with D̄33 > 0, we see that wi changes faster when
the inclusions are softer (z < 1), while for the case where z > 1 the deformation
is concentrated in the matrix and wd evolves at a faster rate. It is also noted that
for sufficiently large values of z (z > 1.75) the inclusions lock up after a certain
amount of deformation. For the case of rigid inclusions, it is clear that while the
inclusions themselves undergo no change, their distribution continues to change with
deformation.

As was the case for D̄33 > 0, there are no significant differences between the
new and ZPC (with wi = wd) predictions for the case where the inclusions are
softer than the matrix. As the inclusions become harder, the distribution effects
begin to influence the evolution of wi, although for the range where the results are
rigorously valid (demarcated by the open circles) the differences between the two
sets of predictions are not very significant. For z = 1.75, when distribution effects
are taken into account, the new predictions give lock up of the inclusions after a
certain amount of deformation, while the old ZPC predictions do not show lock up
of the inclusions. However, for z = 2, the new and old predictions appear to be in
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fairly good agreement, even for large deformations, both predicting relatively small
changes in wi before lock up.

In figure 7b the hardening rate H is shown as a function of the axial strain for
different values of z. It is seen that for z = 0.25, H is initially negative but becomes
positive after a certain amount of deformation. This can be explained by noting that
as wi decreases from its initial value of one, the axial stress decreases in magnitude
(see figure 5a) until it reaches a minimum value and thereafter begins to increase.
(Note that the effect of the distribution is opposite to that of the shape of the
inclusions, but is much smaller in this case.) For z = 1.75, H is found to be negative
throughout the deformation process. This can be explained by noting that shape
effects dominate initially, which causes the axial stress to decrease with decreasing
wi, despite the opposing effect of wd to increase the axial stress. As the deformation
progresses, the continued decrease in wd beyond its critical value (see figure 5b)
causes the axial stress to decrease (although at a slower rate), despite the opposing
effect of wi, because the particles lock up and the distribution effects take control.
For the case of rigid inclusions, there is no change in the shape of the inclusions and
hence the effects of changes in the distribution can be isolated. Thus, the axial stress
initially increases with decreasing wd but, beyond the critical value of wd, further
decreases in wd cause the axial stress to decrease. This is reflected by the hardening
rate initially being positive and negative thereafter.

It can also be seen from figure 7b that, for all values of z, the corresponding pre-
dictions of ZPC assuming that wi = wd for the hardening rate are initially negative
and then positive. Thus, the differences between the two sets of predictions are not
significant for small values of z, but as the inclusions become harder, and there-
fore deform less, the differences between the predictions become important. In the
limiting case of rigid inclusions, the inclusions do not undergo any change in their
shape and hence the model of ZPC predicts that the hardening rate remains zero
throughout the deformation process. On the other hand, as mentioned earlier, the
improved model predicts that the hardening rate is initially positive but becomes
negative with subsequent deformation. It is thus seen that, in this case also, the ef-
fect of the distribution becomes significant when the inclusions are sufficiently hard.
This demonstrates the need to take into account the evolution of the distribution at
least for the case where the inclusions are harder that the matrix.

Finally, we recall that the model is accurate only when the aspect ratios of the
inclusions and the distribution are within the range prescribed by the hypothesis
of impenetrability of the inclusions. In particular, for the case where the inclusions
are rigid, this has important ramifications. As the composite undergoes finite defor-
mation, the distribution of the rigid inclusions evolves—the aspect ratio increases
in tension and decreases in compression—which suggests that the rigid inclusions
may come into contact beyond a certain amount of deformation. Due to the incom-
pressibility of the matrix, this would result in a marked increase in the strength of
the composite. The model, in its present form, is unable to capture these effects
because of the restrictions mentioned earlier. However, it must be noted that these
restrictions arise from limitations of the homogenization procedure for the linear
comparison composite. This leads to the suggestion that more general models could
be developed by making use of improved linear homogenization results, incorporating
more realistic statistics for the distribution of the inclusions.

In addition, we remark that in spite of the availability of several works (e.g. Bao
et al. 1991) that have been devoted to the understanding particle reinforcement in
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metal matrix composites, no work appears to have been carried out to examine the
effect of microstructure evolution in the context of particle-reinforced solids. Because
of this, comparisons with other models, or with numerical simulations are not pos-
sible at this time. There is, however, the work of Hom & McMeeking (1991) who
considered the problem of a rigid particle, embedded in a cubic cell of a perfectly
plastic material, subjected to uniaxial tension (and simple shear). Although these
authors did not consider in any detail the evolution of the distribution of the parti-
cles (i.e. the change in shape of the unit cell) they presented plots for the uniaxial
tensile stress as a function of the strain (their figure 4). There, for f = 0.219, it
can be seen that yield stress in the composite appears to decrease initially (for small
strains in the plastic domain) before increasing for larger strains. The initial decrease
in the yield stress would be consistent with the predictions of our model, shown in
figure 6b, which shows a negative hardening rate for rigidly reinforced composites
subjected to uniaxial tension. On the other hand, the increase in the yield stress
observed in the numerical results for large enough strains could be a consequence of
the stronger particle interactions that would be expected for a composite with peri-
odic microstructures, as opposed to the Hashin–Shtrikman type of microstructures
implicit in our model.

4. Concluding remarks

Part I of this work was concerned with the development of constitutive models
for two-phase nonlinear composites with particulate microstructures. The models,
which are capable of taking into account the evolution of the microstructure when
the composites are subjected to finite deformations, consist of two parts: instanta-
neous constitutive equations for the nonlinear composite and evolution equations for
appropriate internal variables which characterize the microstructure at every instant.
For simplicity, general triaxial loading conditions (with fixed axes) were considered
thus reducing the number of the relevant microstructural variables to five: two aspect
ratios for the ellipsoidal inclusions; two aspect ratios for the ellipsoidal distributions
of the inclusions and the volume fraction of the inclusions. Evolution equations for
these variables were then developed, which when solved in combination with the
instantaneous constitutive equations provide a complete characterization of the ef-
fective response of the composite.

This part of the work was concerned with the application of the model to study
the behaviour of two sample composite systems—porous materials with a perfectly
plastic matrix and two-phase perfectly plastic composites—subjected to axisymmet-
ric loading conditions. It was found that the evolution of the microstructure affects
the overall response of the composite significantly. In particular, for the compos-
ite systems considered, the effective behaviour was found to exhibit hardening, or
even softening, depending on the specific loading conditions, in spite of the fact that
the constituents themselves were taken to be ideally plastic (i.e. non-hardening).
This phenomenon is not surprising in view of the large (nonlinear) changes in the
micro-geometry of the composites as they are subjected to finite deformation. More
generally, these hardening–softening mechanisms would be in competition with the
intrinsic hardening of the constituents of the composite (neglected in this study)
and thus could have significant implications for the global stability of the material
and, in particular, for the development of shear localization. We emphasize that the
yield surfaces change shape and orientation as the loading progresses which cause
the composite systems to develop possibly strong plastic anisotropy.
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A particular focus of this part of the work was the effect of the evolution of the
pair distribution function for the inclusions (voids) on the overall response of the
composites. It was found that for porous composites, as well as for the more general
case where the inclusions are softer than the matrix, the effect of changes in the
distribution are not very significant relative to the effects of the changes in the
size and shape of the inclusions (voids). In this case the simplified model of Ponte
Castañeda & Zaidman (1994), which accounts only for size and shape effects, was
found to be adequate. On the other hand, when the inclusions are sufficiently harder
than the matrix, the deformation is concentrated in the matrix and the distribution
effects tend to become very important. Thus, for example, when a composite with
rigid inclusions in a perfectly plastic matrix is subjected to finite deformation, the
shape and volume fraction of the inclusions do not change, but the distribution of the
inclusions continues to be affected. In this case, the model of PCZ is not adequate,
and it becomes essential to make use of the present (improved) model.

We also note that volume fraction of the inclusions (voids) strongly influences
the magnitude of the effect of changes in the distribution – the larger the inclusion
volume fraction, the stronger is the effect of changes in the distribution. However,
the qualitative effects of the changes in the distribution on the overall response of
the composite do not depend significantly on the inclusion volume fraction. Thus,
while for very small volume fractions it may be sufficient to make use of the model
of PCZ, it is essential to use the present model for larger volume fractions.

Finally, it should be mentioned that this class of models may be used to analyse
the response of heterogeneous materials subjected to the complex loading condi-
tions associated with three-dimensional forming and other manufacturing processes,
provided that the scale of variation of the loading conditions is everywhere large com-
pared to the size of the typical heterogeneity. For such non-uniform loading condi-
tions, the microstructural variables, as well as the stress and deformation fields, would
be position dependent (see, for example, the work of Wang & Richmond (1992) for hot
rolling of thin plates of porous aluminium, where the porosity is found to vary both
in the rolling and transverse directions). It is precisely for these situations—where
direct numerical simulations, accounting for the non-uniform evolution of the mi-
crostructure, would be prohibitively expensive—that the class of simple constitutive
models developed in this work, suitably modified to incorporate thermo-mechanical
and other effects, could become very useful. However, before these models can be
used effectively, the response of the composite to general three-dimensional loading
conditions, incorporating possible changes in the orientation of the particles and of
their distribution functions, must be considered. This is currently under way and the
results will be reported elsewhere.
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Ponte Castañeda, P. & Zaidman, M. 1994 Constitutive models for porous materials with evolving
microstructure. J. Mech. Phys. Solids 42, 1459–1497.
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